Definition of a Function:

Function: each input has exactly \qquad output.

Vertical Line Test:

Important Characteristics of a Function:

Increasing: x-interval (from left to right) where a function is going uphill
Decreasing: x-interval (from left to right) where a function is going downhill
Constant function: x-interval (from left to right) where a function is horizontal
Relative max: a point where a function changes from increasing to decreasing; a "mountain-top"

Relative min: a point where a function changes from decreasing to increasing; a "mountain-top"
Domain: set of all inputs (x-values) for which a function is defined
Range: set of all outputs (y-vaues) for which a function is defined

Reminder: interval notation

- Use [brackets] for closed circles and (parenthesis) for open circles
- Exception: we will use (parenthesis) for all increasing/decreasing intervals
- Some textbooks use brackets instead of parenthesis.
- For x-values, use left, right
- For y-values, use bottom, top
- For undefined points, such as open circles, use a parenthesis instead of a bracket.

Example 1: Identify the important characteristics of the graph shown.

Is the graph a function? How do you know?	
Interval(s) increasing	Interval(s) decreasing
Relative max, if any	Relative min, if any
Domain	Range

Odd and Even Functions:
A function is even if $f(-x)=f(x)$ for all values of x.
A function is odd if $f(-x)=-f(x)$ for all values of x.

Examples 2-4: Determine if the function is even, odd, or neither.
2) $f(x)=3 x^{3}+x^{2}-4$
3) $g(x)=4 x^{2}+x^{4}$
4) $h(x)=-2 x^{5}+x^{3}$

For \#5-7, evaluate each function at the given value of the independent variable.
Given that $f(x)=\left\{\begin{array}{l}5 x-3 \text { if } x<-4 \\ 3 x-5 \text { if } x \geq-4\end{array}\right.$ and $g(x)=2 x^{2}-6$
5) $f(-3)$
6) $f(-8)$
7) $g(x-1)$
8) Given that $f(x)=x^{2}+9 x-7$, find $\frac{f(x+h)-f(x)}{h}$ if $x \neq 0$. Simplify your answer.

9) Graph $f(x)$ on the provided coordinate system.

$$
f(x)=\left\{\begin{array}{c}
x+5 \text { if }-8 \leq x<2 \\
-4 \text { if } x=2 \\
-x+5 \text { if } x>2
\end{array}\right.
$$

.
10) Write the equation of the line in point-slope form that passes through $(3,-6)$ has an x-intercept of -2 . Also write your answer in (h, k) form and slope-intercept form.

For \#11-13: Perform the indicated operations for the given functions for \boldsymbol{f} and \boldsymbol{g}.
11) Find $\frac{f}{g}$ if $f(x)=4 x^{2}-7 x$ and $g(x)=x^{2}-5 x-14$. Factor your answer completely.
12) Find $f-g$ if $f(x)=7 x-9$ and $g(x)=2 x-4$.
13) Find $g(f(x)) \ldots$ also written as $(g \circ f)(x) \ldots$ if $f(x)=-4 x+8$ and $g(x)=3 x+5$.

Inverses of Functions:

- To find the inverse of a function: exchange the x and y-variables, and solve for y.
- Given that f and g are inverse functions, and if $f(a)=b$, then $g(b)=a$.
- In other words, each ordered pair has the x - and y-coordinates exchanged.
- Given that f and g are inverse functions, then $f(x)$ and $g(x)$ are reflections in the line $y=x$.
- Given that f and g are inverse functions, then $f(g(x))=x$ and $g(f(x))=x$.

If a function is one-to-one, then it passes both the Vertical Line Test and the Horizontal Line Test.

- This means that both the function and its inverses are functions.
- For each input, there is exactly one output. And for each output, there is exactly one input.

14) Find the equation of the inverse of the given one-to-one function: $g(x)=\frac{5}{7 x-8}$
15) Use the graph of $f(x)$, as shown to the right, to draw the graph of its inverse function.
16) Determine which two functions below are inverses of each other.

$$
f(x)=3 x \quad g(x)=\frac{x}{3} \quad h(x)=\frac{3}{x}
$$

Transformations of a Function

Given $f(x)$, then $g(x)=a \cdot f(x-h)+k$ has the following transformations on f.

- If $|a|>1$, then there is a vertical stretch by a factor of a.
- If $|a|<1$, then there is a vertical compression by a factor of a.
- If $a<0$, then there is a vertical reflection.
- Horizontal shift: h units
- Vertical shift: k units

Parent Functions

Students need to know the basic form of each parent function below.

Cube Root
$y=\sqrt[3]{x}$

Cubic
$y=x^{3}$

Exponential
$y=e^{x}$

Absolute Value

Square Root
$y=\sqrt{x}$

Logarithmic

For \#17-18, sketch each parent function. Then use transformations to sketch $\boldsymbol{g}(\boldsymbol{x})$.
17) Parent function: $y=|x| ; g(x)=4|x|+1$

18) Parent function: $y=\sqrt[3]{x} ; g(x)=-\sqrt[3]{x+5}$

For \#19-20, use the given graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ to graph the described function $\boldsymbol{g}(\boldsymbol{x})$ on the same graph.
19) $g(x)=-2 f(x)$

20) $g(x)=-f(x)-1$

For \#21 - 25, determine if each relation is a function or not.
21) $(-3,2),(-1,8),(4,6),(-3,5),(0,7)$
22) $x^{2}+y^{2}=25$
23) $y=-\sqrt{x+1}$
24)

25)

