# **Ch 1 Notes**

# **Functions**

### **Definition of a Function:**

Function: each input has exactly \_\_\_\_\_ output.

Vertical Line Test:

## **Important Characteristics of a Function:**

Increasing: x-interval (from left to right) where a function is going uphill

Decreasing: x-interval (from left to right) where a function is going downhill

Constant function: x-interval (from left to right) where a function is horizontal

Relative max: a point where a function changes from increasing to decreasing; a "mountain-top"

Relative min: a point where a function changes from decreasing to increasing; a "mountain-top"

Domain: set of all inputs (x-values) for which a function is defined

Range: set of all outputs (y-vaues) for which a function is defined

Reminder: interval notation

- Use [brackets] for closed circles and (parenthesis) for open circles
  - Exception: we will use (parenthesis) for *all* increasing/decreasing intervals
  - Some textbooks use brackets instead of parenthesis.
- For *x*-values, use *left*, *right*
- For *y*-values, use *bottom, top*
- For undefined points, such as open circles, use a parenthesis instead of a bracket.

**Example 1:** Identify the important characteristics of the graph shown.



### **Odd and Even Functions:**

A function is **even** if f(-x) = f(x) for all values of *x*.

A function is **odd** if f(-x) = -f(x) for all values of x.

## **Math 126**

#### **Ch 1 Notes**

**Examples 2 – 4:** Determine if the function is even, odd, or neither. 2)  $f(x) = 3x^3 + x^2 - 4$ 

3) 
$$g(x) = 4x^2 + x^4$$

4) 
$$h(x) = -2x^5 + x^3$$

For #5 – 7, evaluate each function at the given value of the independent variable. Given that  $f(x) = \begin{cases} 5x - 3 \text{ if } x < -4 \\ 3x - 5 \text{ if } x \ge -4 \end{cases}$  and  $g(x) = 2x^2 - 6$ 

5) f(-3) 6) f(-8) 7) g(x-1)

8) Given that  $f(x) = x^2 + 9x - 7$ , find  $\frac{f(x+h) - f(x)}{h}$  if  $x \neq 0$ . Simplify your answer.



9) Graph f(x) on the provided coordinate system.  $(x + 5 \text{ if } - 8 \le x < 2)$ 

$$f(x) = \begin{cases} -4 \text{ if } x = 2\\ -x + 5 \text{ if } x > 2 \end{cases}$$

**Math 126** 



10) Write the equation of the line in point-slope form that passes through (3, -6) has an *x*-intercept of -2. Also write your answer in (h, k) form and slope-intercept form.

For #11 – 13: Perform the indicated operations for the given functions for f and g. 11) Find  $\frac{f}{g}$  if  $f(x) = 4x^2 - 7x$  and  $g(x) = x^2 - 5x - 14$ . Factor your answer completely.

12) Find f - g if f(x) = 7x - 9 and g(x) = 2x - 4.

13) Find g(f(x))... also written as  $(g \circ f)(x)...$  if f(x) = -4x + 8 and g(x) = 3x + 5.

## **Math 126**

**Ch 1 Notes** 

**Functions** 

#### **Inverses of Functions:**

- To find the inverse of a function: exchange the *x* and *y*-variables, and solve for *y*.
- Given that f and g are inverse functions, and if f(a) = b, then g(b) = a.
  In other words, each ordered pair has the x- and y-coordinates exchanged.
- Given that f and g are inverse functions, then f(x) and g(x) are reflections in the line y = x.
- Given that f and g are inverse functions, then f(g(x)) = x and g(f(x)) = x.

If a function is one-to-one, then it passes both the Vertical Line Test and the Horizontal Line Test.

- This means that both the function and its inverses are functions.
- For each input, there is exactly one output. And for each output, there is exactly one input.

14) Find the equation of the inverse of the given one-to-one function:  $g(x) = \frac{5}{7x-8}$ 

15) Use the graph of f(x), as shown to the right, to draw the graph of its inverse function.



16) Determine which two functions below are inverses of each other.

$$f(x) = 3x \qquad \qquad g(x) = \frac{x}{3}$$



# Math 126

#### **Ch 1 Notes**

## **Functions**

